ใน การ ปล่อย วัตถุ จาก ที่ สูง ลง สู่ ที่ ต่ำ พลังงานจลน์ ของ วัตถุ จะ เปลี่ยน ไป อย่างไร

෤����� ��ѵ���� ��觻�д�ɰ� ���ǡ��� �ɵ���ʵ�� >>

�ҹ��о�ѧ�ҹ

       �ҹ ��� ����͡�ç��зӵ���ѵ�� ����ѵ�ط��١��з��ա������͹���仵����Ȣͧ�ç ��˹����繨��

��ѧ�ҹ ��� ��������ö�ӧҹ�� ���㴷���ա������¹�ŧ�����ա������͹��� ��觹�������վ�ѧ�ҹ ��ѧ�ҹ�������ٻẺ ���� ��ѧ�ҹ������͹ ��ѧ�ҹ�ʧ ��ѧ�ҹ���§ ��ѧ�ҹ�� ��ѧ�ҹ俿�� ��ѧ�ҹ��� �繵�

��ѧ�ҹ�դ������繵�͡�ô�ç���Ե�ͧ����ժ��Ե�ء��Դ ����դ�������Ǣ�ͧ�Ѻ�������ҵ������ҳ ����з�觻Ѩ�غѹ�����������ѧ�ҹ��ҧ � �ӡԨ����㹡�ô�ç���Ե������ӹ�¤����дǡ���ҡ��� ��ѧ�ҹ�� ���͡���� 2 �������˭� � ���

1. ��ѧ�ҹ�Ź� ��� ��ѧ�ҹ����Դ�Ѻ�ѵ�ط����ѧ����͹��� �� ������ ���Թ ö���ѧ��� �����ѧ�Թ �繵� �ѵ�ط������͹�����¤��������٧ ���վ�ѧ�ҹ�Ź��ҡ�����ѵ�ط������͹�����¤������ǵ�� �����ѵ������͹�����¤���������ҡѹ�ѵ�ط��������ҡ���� ���վ�ѧ�ҹ�Ź��ҡ����

2. ��ѧ�ҹ�ѡ�� ��� ��ѧ�ҹ�����������ѵ�����ͧ�Ҩҡ���˹觢ͧ�ѵ�� ����

  1. ��ѧ�ҹ�ѡ�������ǧ �繾�ѧ�ҹ�����������ѵ�ث������㹷���٧ �Դ��� ���ͧ�ҡ�ç�����ǧ�ͧ�š����зӵ���ѵ�� �ѵ�ط�����躹��鹴Թ����������վ�ѧ�ҹ�ѡ�������ǧ ���ѵ�ط�������٧�ҡ��鹴Թ �վ�ѧ�ҹ�ѡ�������ǧ ��ж���ѵ�������٧�ҡ��鹴Թ�ҡ���� ����վ�ѧ�ҹ�ѡ�������ǧ�ҡ��鹵��仴���
  2. ��ѧ�ҹ�ѡ���״���� �繾�ѧ�ҹ�ѡ������������ѵ�ط���״������ ��੾��ʻ�ԧ ʻ�ԧ����������Ҿ���� ������١�״����˴ �ж����� ����վ�ѧ�ҹ�ѡ���״���� ��������״ʻ�ԧ ���͡�ʻ�ԧ����㹢�з��ʻ�ԧ�١�״���Ͷ١�����˴��� ʻ�ԧ���վ�ѧ�ҹ�ѡ���״����

��ѧ�ҹ����ͧ�������Ҩ������ٻ�ͧ��ѧ�ҹ��ҧ � �ѧ���

1. ��ѧ�ҹ��� �繾�ѧ�ҹ�ѡ����ὧ��������������ç���ҧ�ͧ���� �� ��ѧ�ҹ��շ������㹹���ѹ������ԧ ��ҹ�Թ ��ʸ����ҵ� 㹿׹ 㹶�ҹ��� ����Ͷ١�������л���¾�ѧ�ҹ��� ͡����ٻ�ͧ��ѧ�ҹ������͹ ��ѧ�ҹ�ʧ ���;�ѧ�ҹ��

2. ��ѧ�ҹ俿�� �繾�ѧ�ҹ����Դ�ҡ�������͹���ͧ����硵�͹仵���ѵ�ط�� �繵�ǹ�俿�� �ѧ��鹾�ѧ�ҹ俿�Ҩ֧�繾�ѧ�ҹ�Ź� ��ѧ�ҹ俿������ö����¹�ٻ��繾�ѧ�ҹ������͹ ��ѧ�ҹ�ʧ ��ѧ�ҹ�� ������ �

3. ��ѧ�ҹ�� �繾�ѧ�ҹ�������Ǣ�ͧ�Ѻ�������͹��� �µç�ͧ�ѵ�ص�ҧ � ����ѵ�������觨��վ�ѧ�ҹ�ѡ�� �����ѵ������͹�����վ�ѧ�ҹ�Ź�

4. ��ѧ�ҹ���ѧ�� �繾�ѧ�ҹ���������ٻ�ͧ���� �� �ʧ ���§ ������͹ �����Է�� ����ѧ�յ�ҧ � ����繾�ѧ�ҹ�Ź�

5. ��ѧ�ҹ�������� �繾�ѧ�ҹ���١������͡�ҡ��á���ѹ��ѧ�շ���������� �����ҵ����ͨҡ�һ�ԡó���ҳ� �������Դ���������

ใน การ ปล่อย วัตถุ จาก ที่ สูง ลง สู่ ที่ ต่ำ พลังงานจลน์ ของ วัตถุ จะ เปลี่ยน ไป อย่างไร
ใน การ ปล่อย วัตถุ จาก ที่ สูง ลง สู่ ที่ ต่ำ พลังงานจลน์ ของ วัตถุ จะ เปลี่ยน ไป อย่างไร
ใน การ ปล่อย วัตถุ จาก ที่ สูง ลง สู่ ที่ ต่ำ พลังงานจลน์ ของ วัตถุ จะ เปลี่ยน ไป อย่างไร
ใน การ ปล่อย วัตถุ จาก ที่ สูง ลง สู่ ที่ ต่ำ พลังงานจลน์ ของ วัตถุ จะ เปลี่ยน ไป อย่างไร

   งาน    หมายถึง แรงที่กระทำต่อวัตถุแล้วทำให้วัตถุเคลื่อนที่ไปตามทิศทางของแนวแรง ถ้าเราออกแรงกระทำต่อวัตถุแล้ววัตถุไม่เคลื่อนที่ แสดงว่าไม่เกิดงาน
  ปริมาณของงานขึ้นอยู่กับ
1. ขนาดของแรงที่ใช้
2. ระยะทางที่วัตถุเคลื่อนที่ไปตามทิศทางของแนวแรง
3. ทิศทางการเคลื่อนที่ของวัตถุตามแนวแรง
ตัวอย่างเช่น การออกแรงยกกล่องให้สูงขึ้น ทิศทางการเคลื่อนที่ของกล่องมีทิศทางเดียวกับแนวแรง การกระทำเช่นนี้เป็นการทำให้เกิดงานทางวิทยาศาสตร์

งาน ( Work)

     งานเป็นปริมาณที่เกิดจากการเคลื่อนที่ของวัตถุเนื่องจากแรงกระทำ   ขนาดของงานของแรงใดมีค่าเท่ากับผลคูณระหว่างขนาดของแรงนั้นกับระยะของการเคลื่อนที่ในช่วงพิจารณาซึ่งอยู่ในแนวแรง หรือ  W = FS

            โดย  W   มีหน่วยเป็นนิวตัน /เมตร  หรือจูล

                     F   มีหน่วยเป็น นิวตัน

                     S    มีหน่วยเป็น  เมตร

กำลัง ( Power)

     กำลัง คือ อัตราการทำงานหรืองานที่เกิดขึ้นในหนึ่งหน่วยเวลา    

           กำหนดให้         W   คือ งานที่ทำได้ มีหน่วยเป็นจูล (J)              

                                  t    คือ เวลาที่ใช้ในการทำงาน มีหน่วยเป็นวินาที (s)

                                      P   คือ กำลัง

           จากนิยามของกำลังเขียนเป็นสมการได้ว่า        P  =  w/t       

           หน่วยของกำลัง คือ J/s หรือ เรียกว่า Watt (วัตต์) “ W ”

พลังงาน (Energy)

      พลังงานเป็นสมบัติอย่างหนึ่งของระบบที่บ่งถึงขีดความสามารถในการทำงานหรือความสามารถในการทำให้เปลี่ยนแปลงในทางใดทางหนึ่ง  พลังงานของวัตถุจึงวัดได้จากงานของวัตถุที่ทำได้ พลังงานมีหลายรูปแบบ เช่น พลังงานกล พลังงานเคมี พลังงานไฟฟ้า พลังงานนิวเคลียร์ พลังงานแผ่รังสี พลังงานความร้อน เป็นต้น  ในบทนี้จะเป็นการศึกษาพลังงานในรูปแบบที่ง่าย ๆ ก่อนคือพลังงานกล จำแนกเป็น 2 ประเภทคือ พลังงานจลน์ และพลังงานศักย์

     พลังงานมีหน่วยวัดเป็น จูล(Joules) “ J ”

พลังงานจลน์ (Kinetic  Energy)

     พลังงานจลน์ คือพลังงานที่สะสมอยู่ในวัตถุอันเนื่องจากอัตราเร็วของวัตถุขึ้นอยู่กับการเคลื่อนที่ของวัตถุ  ใช้สัญลักษณ์ (Ek)   หาพลังงานจลน์ได้จาก ปริมาณงานที่ทำได้ทั้งหมด ของวัตถุที่กำลังเคลื่อนที่ไปทำงานอย่างหนึ่ง จนกระทั่งวัตถุหยุดนิ่ง   จากนิยามเขียนเป็นสมการได้ว่า        Ek  = 1/2  mv2

     หากมีแรง กระทําต่อวัตถุ จนขนาดของความเร็วของวัตถุเปลี่ยนไป ทําให้พลังงานจลน์ของวัตถุเปลี่ยนไปจากเดิม พบว่างานที่แรงนั้นกระทําต่อวัตถุมีค่าเท่ากับพลังงานจลน์ของวัตถุที่เปลี่ยนไป

หรือ   W  =  Ek2  –  Ek1  เรียกคํากล่าวนี้ว่า หลักของงาน-พลังงานจลน์

พลังงานศักย์  (Potential   Energy)

    พลังงานศักย์ (Ep) คือ พลังงานที่ถูกเก็บสะสมไว้และพร้อมที่จะนำมาใช้  แบ่งออกเป็น  2  ประเภท คือ

        1. พลังงานศักย์โน้มถ่วง(Gravitational  Potential   Energy) คือ พลังงานที่สะสมอยู่ในวัตถุ เกิดจากแรงโน้มถ่วงและตำแหน่งของวัตถุตามระดับความสูง  เมื่อปล่อยวัตถุซึ่งอยู่สูงจากพื้น เคลื่อนที่ตกลงมา พบว่าเกิดงานเนื่องจากแรงโน้มถ่วงของโลกต่อวัตถุ มีค่าเท่ากับ mgh แสดงว่าวัตถุที่อยู่สูงจากพื้น มีพลังงาน เพราะว่าสามารถทำงานได้เรียกว่า พลังงานศักย์โน้มถ่วง ซึ่งมีค่าเท่ากับ mgh นั่นเอง   

เขียนสมการได้ว่า     Ep   =   mgh

       2. พลังงานศักย์ยืดหยุ่น(Elastic  Potential) คือ พลังงานศักย์ของสปริงขณะที่ยืดออก หรือหดเข้าจากตำแหน่งสมดุล ถูกเขียนแทนด้วยสัญลักษณ์ “ Ep (elastic) ”

หาได้จากสมการ      Ep  = 1/2 kx2

      กฎการอนุรักษ์พลังงาน

           พลังงานรูปหนึ่งสามารถเปลี่ยนเป็นพลังงานรูปอื่น ๆ  ได้  พลังงานที่มาจากการเปลี่ยนรูปนี้จะมีค่าเท่ากับพลังงานเดิม ซึ่งเป็นไปตามกฎการอนุรักษ์พลังงาน ( law  of  conservation  of  energy )

           ขณะที่โยนลูกบอลขึ้นจากพื้น  พลังงานเคมีในร่างกายบางส่วนจะเปลี่ยนเป็นพลังงานจลน์ของลูกบอลจึงทำให้ลูกบอลเคลื่อนที่ได้เมื่อลูกบอลเคลื่อนที่สูงขึ้น  ความเร็วจะลดลง  นั่นคือพลังงานจลน์ของลูกบอลจะลดลงโดยเปลี่ยนไปเป็นพลังงานศักย์โน้มถ่วง  ณ  ตำแหน่งสูงสุด  ของการเคลื่อนที่  พลังงานจลน์ของลูกบอลเป็นศูนย์และพลังงานศักย์โน้มถ่วงมีค่าสูงสุด  ขณะที่ลูกบอลเคลื่อนที่ลง  พลังงานศักย์โน้มถ่วงจะเปลี่ยนเป็นพลังงานจลน์  และเมื่อลูกบอลกระทบพื้นพลังงานจลน์จะเปลี่ยนเป็นพลังงานความร้อนและเสีย  เรียกแรงที่กระทำแล้วพลังงานกลไม่เปลี่ยนนี้ว่า  แรงอนุรักษ์

      กฎการอนุรักษ์พลังงานกล

          ถ้าไม่มีแรงภายนอกมากระทำกับวัตถุ  (งานรวม=0) แล้วผลรวมของพลังงานที่สะสมภายในวัตถุจะคงที่ เนื่องจาก ผลรวมของพลังงานศักย์ และพลังงานจลน์ของวัตถุ เรียกว่าพลังงานกลของวัตถุซึ่งเป็นพลังงานที่สะสมภายในวัตถุ จะได้สมการงานและพลังงานดังนี้

E  =  Ek  +  Ep  =  คงที่

                                                 โดยที่           Ek  = 1/2 mv2

                                                  และ             Ep  =  mgh  + 1/2 kx2

รูปแสดงการกระทำให้เกิดงานทางวิทยาศาสตร์
หน่วยของงานในระบบเอสไอ คือ จูล (J) หรือนิวตัน-เมตร (N-m) โดยที่ 1 จูลของงานที่ทำเกิดจากการออกแรง 1 นิวตันกระทำต่อวัตถุให้วัตถุเคลื่อนที่ไปได้ 1 เมตร ตามทิศทางของแนวแรง
จากรูป งานขนาด 1 จูลที่ทำได้เมื่อยกกล่องหนัก 1 นิวตันขึ้นไปในแนวดิ่งเป็นระยะทางสูง 1 เมตร ซึ่งเราอาจใช้หน่วยของงานที่ใหญ่กว่าจูล เช่น กิโลจูล (kJ) เมกะจูล (MJ) เป็นต้น
เมื่อ
1 kJ = 1,000 J
1 MJ = 1,000,000 J
การคำนวณหางาน
ถ้าเราทราบขนาดของแรงที่กระทำต่อวัตถุ และระยะทางที่วัตถุเคลื่อนที่ไปได้หลังจากถูกแรงกระทำแล้ว เราสามารถคำนวณหาปริมาณของงานได้จาก
งาน = แรง x ระยะทางที่วัตถุเคลื่อนที่ได้ตามทิศทางของแนวแรง
ถ้ากำหนดให้ F = แรงที่กระทำให้วัตถุเคลื่อนที่
s = ระยะทางที่วัตถุเคลื่อนที่ได้ตาม
ทิศทางของแนวแรง
W = งานที่ทำได้
นั่นคือ W = F3s
ตัวอย่างที่ 1 นงนุชยกกล่องที่มีน้ำหนัก 20 นิวตัน ขึ้นจากพื้นไปวางบนชั้นหนังสือที่สูงจากพื้น 1.3 เมตร จงหางานที่นงนุชทำได้
วิธีทำ F = 20 นิวตัน
s = 1.3 เมตร
จากสูตร W = F x s
W = 20 N x 1.3 m
= 26 J
ดังนั้น งานที่นงนุชทำได้มีค่าเท่ากับ 26 จูล ตอบ
ตัวอย่างที่ 2  ชายผู้หนึ่งดันตู้ที่มีน้ำหนัก 1,000 นิวตัน ให้เคลื่อนที่ไปข้างหน้า 0.5 เมตร จงคำนวณหางานที่ชายผู้นี้ทำได้
วิธีทำ จากสูตร งานที่ทำ = แรง x ระยะทางที่วัตถุเคลื่อนที่
แทนค่าในสูตร งานที่ทำ = 1,000 N x 0.5 m
= 500 J
ดังนั้น งานที่ชายผู้นี้ทำได้มีค่าเท่ากับ 500 จูล ตอบ

พลังงาน

  พลังงาน  คือ ความสามารถในการทำงาน เราใช้พลังงานในการทำกิจกรรมหรือทำงานต่างๆ เช่น เดิน หายใจ การเจริญเติบโต เพาะปลูก เป็นต้น พลังงานให้แสงสว่างกับบ้านเรือนหรือที่อยู่อาศัยของเรา พลังงานให้กำลังแก่ยานพาหนะต่างๆ เช่น รถยนต์ รถไฟ จรวด เครื่องบิน เป็นต้น พลังงานทำให้บ้านที่อยู่อาศัย อาคารสำนักงานต่างๆ ของเราเย็นสบาย ทำให้เกิดรูปภาพในโทรทัศน์มากมาย นอกจากนี้ยังให้กำลังแก่เครื่องจักรในโรงงานอุตสาหกรรมได้ด้วย ดังนั้นถ้าปราศจากพลังงานจะไม่มีสิ่งใดทำงานได้ สัตว์และพืชก็จะตาย เครื่องจักรและสิ่งต่างๆ ก็จะไม่สามารถทำงานได้ ในสภาพความเป็นจริงหากโลกของเราปราศจากพลังงานก็จะไม่มีสิ่งมีชีวิต เพราะทุกๆ ชีวิตต้องการพลังงาน

รถจักรยานยนต์เคลื่อนที่โดยใช้พลังงานเชื้อเพลิง

นักวิทยาศาสตร์ได้จัดรูปแบบของพลังงานให้เป็นหมวดหมู่ เพื่อความเข้าใจเกี่ยวกับพลังงานที่มีหลายรูปแบบแตกต่างกันไป เช่น พลังงานที่ร่างกายใช้ในการทำงานได้จากพลังงานเคมีในอาหารที่เรารับประทาน พลังงานแสงช่วยให้เรามองเห็นสิ่งต่างๆ รอบตัว พลังงานเสียงที่เราได้ยินใช้ในการสื่อสาร วัตถุเคลื่อนที่ได้โดยใช้พลังงานกล เราใช้พลังงานไฟฟ้ากับเครื่องใช้ไฟฟ้า เป็นต้น

พลังงานกล

พลังงานกล  (mechanical energy) เป็นพลังงานที่เกี่ยวข้องกับการเคลื่อนที่ของวัตถุ แบ่งออกเป็น 2 ประเภท ได้แก่ พลังงานศักย์และพลังงานจลน์ โดยพลังงานศักย์เป็นพลังงานที่สะสมอยู่ในวัตถุ ส่วนพลังงานจลน์เป็นพลังงานของวัตถุขณะที่วัตถุเคลื่อนที่ พลังงานศักย์มี 2 ชนิด คือพลังงานศักย์ยืดหยุ่น ซึ่งเป็นพลังงานที่สะสมในวัตถุที่มีการยืดหยุ่นได้ เช่น พลังงานที่สะสมในสปริง ในแถบยางหรือหนังสติก เป็นต้น พลังงานศักย์อีกชนิดหนึ่งเป็นพลังงานที่สะสมในวัตถุที่อยู่ในตำแหน่งสูงจาก พื้นโลกเรียกว่า พลังงานศักย์โน้มถ่วง แต่ในระดับชั้นนี้เราจะกล่าวถึงเฉพาะพลังงานศักย์โน้มถ่วง

พลังงานศักย์โน้มถ่วง

พลังงานศักย์โน้มถ่วง (gravitational potential energy) หมายถึง พลังงานที่สะสมอยู่ในวัตถุที่อยู่สูงจากพื้นโลกขึ้นไป และวัตถุนั้นอยู่ในแนวดิ่งปัจจัยที่มีผลต่อพลังงานศักย์โน้มถ่วง คือ
1.  มวลของวัตถุ วัตถุที่มีมวลมาก แรงโน้มถ่วงของโลกที่กระทำต่อวัตถุนั้นจะมาก ทำให้ค่าของพลังงานศักย์โน้มถ่วงมากตามไปด้วย
2.  ตำแหน่งที่อยู่ของวัตถุ เป็นระยะความสูงของวัตถุที่อยู่ห่างจากผิวโลก วัตถุที่อยู่ห่างจากผิวโลกมากจะสะสมค่าพลังงานศักย์โน้มถ่วงไว้มาก ดังนั้นวัตถุที่อยู่สูงจึงมีค่าพลังงานศักย์โน้มถ่วงมากกว่าวัตถุที่อยู่ใน ระดับต่ำกว่า เมื่อวัตถุอยู่ ณ ตำแหน่งสูงสุดจะมีค่าพลังงานศักย์โน้มถ่วงมากที่สุด และเมื่อวัตถุตกถึงผิวโลกจะไม่มีค่าพลังงานศักย์โน้มถ่วงหรือมีค่าพลังงาน ศักย์โน้มถ่วงเป็นศูนย์
ถ้าเรากำหนดให้ Ep แทนพลังงานศักย์โน้มถ่วง สามารถเขียนความสัมพันธ์ระหว่างพลังงานศักย์โน้มถ่วงของวัตถุกับมวลและความ สูงของวัตถุเป็นสมการได้ดังนี้

m = มวลของวัตถุ (กิโลกรัม)
g = ความเร่งเนื่องจากแรงโน้มถ่วงของโลก ( = 9.8 เมตร/ วินาทีกำลังสอง2)
h = ความสูงของวัตถุจากพื้น (เมตร)
Ep = พลังงานศักย์โน้มถ่วง (จูล)

ตัวอย่างที่ 1 นักกีฬากระโดดน้ำมวล 50 กิโลกรัม กระโดดน้ำที่ตำแหน่งต่างๆ กัน จงคำนวณหาพลังงานศักย์ของนักกีฬาเมื่อ
1) ยืนที่พื้นขอบสระน้ำ
2) ยืนที่ระดับสูง 4 เมตรจากขอบสระน้ำ
3) ยืนที่ระดับสูง 6 เมตรจากขอบสระน้ำ
ตัวอย่างที่ 2 จงหาปริมาณพลังงานศักย์ของลูกมะพร้าวที่อยู่บนต้นสูง 6 เมตร เมื่อ
1) ลูกมะพร้าวมีมวล 0.5 กิโลกรัม
2) ลูกมะพร้าวมีมวล 1.0 กิโลกรัม
วิธีทำ 1) เมื่อลูกมะพร้าวมีมวล 0.5 กิโลกรัม

2) เมื่อลูกมะพร้าวมีมวล 1.0 กิโลกรัม

ตัวอย่างการใช้ประโยชน์ของพลังงานศักย์โน้มถ่วง เช่น การกักเก็บน้ำในอ่างเก็บน้ำเหนือเขื่อนเพื่อผลิตกระแสไฟฟ้า ถ้ากักเก็บน้ำไว้ได้สูงมากก็จะมีพลังงานศักย์มาก การเพิ่มน้ำหนักของปั้นจั่นจะทำให้พลังงานศักย์เพิ่มขึ้น เป็นต้น

พลังงานจลน์  (kinetic energy)

เป็นพลังงานของวัตถุขณะที่วัตถุเคลื่อนที่
ปัจจัยที่มีผลต่อพลังงานจลน์ คือ
1. มวลของวัตถุ วัตถุที่มีค่าของมวลมากจะมีพลังงานจลน์มาก
2. ความเร็วในการเคลื่อนที่ของวัตถุ วัตถุที่เคลื่อนที่ ด้วยความเร็วสูงจะมีพลังงานจลน์มากด้วย
ถ้าเรากำหนดให้ Ek แทนพลังงานจลน์ สามารถเขียนความสัมพันธ์ระหว่างพลังงานจลน์ของวัตถุกับมวลและความเร็วของ วัตถุได้ดังนี้
m = มวลของวัตถุ (กิโลกรัม)
v = ความเร็วของวัตถุ (เมตร/วินาที)
Ek = พลังงานจลน์ของวัตถุ (จูล)
ตัวอย่างที่ 3 รถยนต์คันหนึ่งมวล 1,500 กิโลกรัม เคลื่อนที่ด้วยความเร็ว 72 กิโลเมตรต่อชั่วโมง จงหาพลังงานจลน์ของรถยนต์
วิธีทำ จากสูตร
ตัวอย่างที่ 4 นักกีฬากระโดดน้ำมวล 50 กิโลกรัม กระโดดลงสู่ผิวน้ำด้วยความเร็ว 10 เมตรต่อวินาที จงหาพลังงานจลน์จากการเคลื่อนที่ของนักกีฬา
วิธีทำ
ในชีวิตประจำวันเรามีความคุ้นเคยกับผลที่เกิดจากพลังงานจลน์เสมอ เช่น พลังงานจลน์จากการตกของลูกตุ้มเหล็กที่ติดตั้งอยู่กับปั้นจั่นจะช่วยในการ ตอกเสาเข็ม ซึ่งเป็นฐานรากของการก่อสร้างอาคารต่างๆ พลังงานจลน์ของน้ำที่ไหลตกจากที่สูงกระทบกังหันน้ำให้หมุนช่วยในการ ผลิตกระแสไฟฟ้าเพื่อใช้ประโยชน์อย่างกว้างขวาง การหล่นของผลไม้จากต้น อธิบายได้ว่าผลไม้ที่หล่นจากที่สูงกว่าจะกระทบกับพื้นด้วยความเร็วมากกว่าผล ไม้ที่หล่นจากที่ต่ำ
ทั้งพลังงานศักย์และพลังงานจลน์เป็นพลังงานที่เกี่ยวข้องกับการเคลื่อนที่ ของวัตถุ ผลรวมของพลังงานศักย์และพลังงานจลน์ของวัตถุเรียกว่า

พลังงานกล   (mechanical energy)

การเปลี่ยนรูปกลับไปกลับมาระหว่างพลังงานศักย์โน้มถ่วงและพลังงานจลน์ ทำให้เกิดสมดุลของพลังงานดังนี้
ขณะวัตถุอยู่ในตำแหน่งสูงสุด วัตถุจะหยุดนิ่ง พลังงานศักย์โน้มถ่วงจะมีค่าสูงสุด ส่วนพลังงานจลน์จะมีค่าต่ำสุดคือเท่ากับศูนย์ เมื่อวัตถุเริ่มเคลื่อนที่ พลังงานศักย์โน้มถ่วงจะเริ่มลดลง เนื่องจากพลังงานศักย์โน้มถ่วงเปลี่ยนไปเป็นพลังงานจลน์ และขณะวัตถุเคลื่อนที่ต่ำลงมาจนถึงพื้น พลังงานจลน์กลับมีค่าสูงสุด ส่วนพลังงานศักย์โน้มถ่วงมีค่าต่ำสุดคือเท่ากับศูนย์ เนื่องจากพลังงานศักย์โน้มถ่วงทั้งหมดเปลี่ยนไปเป็นพลังงานจลน์นั่นเอง
เมื่อวัตถุอยู่สูง พลังงานศักย์โน้มถ่วงจะยิ่งมาก และเมื่อเคลื่อนที่ตกลงมาพลังงานศักย์จะลดลง และจะมีพลังงานจลน์มากขึ้น
รูปแสดงการเปลี่ยนแปลงพลังงาน
พลังงานนอกจากจะอยู่ในรูปแบบพลังงานศักย์ พลังงานจลน์ หรือพลังงานกลแล้วในชีวิตประจำวันเรายังพบพลังงานในรูปแบบต่างๆ ดังนี้
1. พลังงานเคมี
เป็นพลังงานที่แฝงอยู่ในโครงสร้างของสาร เช่น พลังงานเคมีที่อยู่ในน้ำมันเชื้อเพลิง พลังงานเคมีที่อยู่ในอาหาร พลังงานเคมีที่มีอยู่ในแบตเตอรี่หรือถ่านไฟฉาย ถ้านำมาใช้จะปล่อยพลังงานเคมีออกมาใช้ทำประโยชน์ในด้านต่างๆ พลังงานเคมีนี้อาจเรียกอีกอย่างหนึ่งว่า “พลังงานสะสม”

2. พลังงานไฟฟ้า

เป็นพลังงานที่เกิดจากการเคลื่อนที่ของอิเล็กตรอนหรือประจุไฟฟ้าในช่วงเวลา หนึ่ง โดยผ่านเครื่องกำเนิดไฟฟ้าที่มีความต่างศักย์ไฟฟ้า เช่น ไดนาโม เซลล์สุริยะ เป็นต้น

3. พลังงานคลื่น

เป็นพลังงานที่ส่งมาในรูปของคลื่น เช่น คลื่นแสง เสียง คลื่นวิทยุ ซึ่งมนุษย์นำมาใช้ประโยชน์ต่างๆ มากมาย เช่น ใช้ในการพยากรณ์อากาศ การสื่อสาร โดยจะใช้พลังงานที่อยู่ในรูปของคลื่นในการรับส่งข้อมูล

4. พลังงานนิวเคลียร์

เป็นพลังงานที่ถูกปล่อยออกมาในรูปของสารกัมมันตรังสีซึ่งมีอยู่ตามธรรมชาติ หรือสารกัมมันตรังสีในระเบิดนิวเคลียร์ เครื่องปฏิกรณ์นิวเคลียร์
โรงงานไฟฟ้านิวเคลียร์จะใช้พลังงานนิวเคลียร์จากเตาปฏิกรณ์นิวเคลียร์ในรูป ของพลังงานความร้อนในการผลิตกระแสไฟฟ้า
หมายเหตุ
กฎการอนุรักษ์พลังงาน กล่าวว่า “พลังงานไม่สามารถสร้างขึ้นใหม่หรือทำให้สูญหายไปได้ แต่พลังงานสามารถเกิดการถ่ายโอนระหว่างพลังงานด้วยกันได้ หรือเกิดการเปลี่ยนรูปพลังงานได้นั่นเอง” มนุษย์ใช้หลักการดังกล่าวเปลี่ยนรูปพลังงานมาใช้ให้เกิดประโยชน์และตรงตาม ความต้องการได้
พลังงานความร้อน
อุณหภูมิและหน่วยวัด
ในชีวิตประจำวันเราจะคุ้นเคยกับการใช้พลังงานความร้อน (thermal energy) อยู่เสมอ พลังงานความร้อนเป็นพลังงานที่สามารถถ่ายเทจากที่หนึ่งไปยังอีกที่หนึ่งได้ อันเนื่องมาจากการเปลี่ยนแปลงอุณหภูมิ เมื่อวัตถุดูดกลืนพลังงานความร้อนจะทำให้วัตถุมีอุณหภูมิสูงขึ้น จึงเกิดการถ่ายเทพลังงานความร้อนให้กับวัตถุอื่นที่มีอุณหภูมิต่ำกว่า ซึ่งต้นกำเนิดของพลังงานความร้อนมาจากดวงทิตย์ การเผาไหม้ของเชื้อเพลิง การขัดถูกันของวัตถุ และจากพลังงานไฟฟ้า
วัตถุเมื่อได้รับพลังงานความร้อนจะมีอุณหภูมิสูงขึ้น อุณหภูมิเป็นปริมาณที่บอกให้ทราบถึงระดับความร้อนของวัตถุ
เครื่องมือที่ใช้วัดอุณหภูมิมีหลายชนิด ที่นิยมใช้กันมากคือ เทอร์มอมิเตอร์ ซึ่งเป็นเครื่องมือที่ใช้หลักการขยายตัวของของเหลวเมื่อได้รับความร้อน มีลักษณะเป็นหลอดแก้วยาว ปลายทั้งสองข้างปิด ปลายหลอดข้างหนึ่งเป็นกระเปาะ ซึ่งบรรจุของเหลว ที่ขยายตัวได้ง่ายเมื่อได้รับความร้อน และหดตัวได้ง่ายเมื่อได้รับความเย็น ของเหลวที่บรรจุอยู่ภายในเทอร์มอมิเตอร์นิยมใช้ปรอทซึ่งมีสีเงิน แต่บางทีก็ใช้แอลกอฮอล์ผสมสีบรรจุในเทอร์มอมิเตอร์แทนปรอท
ใน การ ปล่อย วัตถุ จาก ที่ สูง ลง สู่ ที่ ต่ำ พลังงานจลน์ ของ วัตถุ จะ เปลี่ยน ไป อย่างไร

การถ่ายโอนพลังงานความร้อน

การถ่ายโอนพลังงานความร้อน เป็นการถ่ายเทพลังงานความร้อนระหว่างที่สองแห่งที่มีอุณหภูมิแตกต่างกัน วิธีการถ่ายโอนพลังงานความร้อนแบ่งได้เป็น 3 วิธี ดังนี้
1. การถ่ายโอนความร้อนโดยการนำความร้อน เป็นการถ่ายโอนความร้อนโดยความร้อนจะเคลื่อนที่ไปตามเนื้อของวัตถุจาก ตำแหน่งที่มีอุณหภูมิสูงไปสู่ตำแหน่งที่มีอุณหภูมิต่ำกว่า โดยที่วัตถุที่เป็นตัวกลางในการถ่ายโอนความร้อนไม่ได้เคลื่อนที่ เช่น การนำแผ่นอะลูมิเนียมมาเผาไฟ โมเลกุลของแผ่นอะลูมิเนียมที่อยู่ใกล้เปลวไฟจะร้อนก่อนโมเลกุลที่อยู่ไกลออก ไป เมื่อได้รับความร้อนจะสั่นมากขึ้นจึงชนกับโมเลกุลที่อยู่ติดกัน และทำให้โมเลกุลที่อยู่ติดกันสั่นต่อเนื่องกันไป ความร้อนจึงถูกถ่ายโอนไปโดยการสั่นของโมเลกุลของแผ่นอะลูมิเนียม
โลหะต่างๆ เช่น เงิน ทอง อะลูมิเนียม เหล็ก เป็นวัตถุที่นำความร้อนได้ดี จึงถูกนำมาทำภาชนะในการหุงต้มอาหาร วัตถุที่นำความร้อนไม่ดีจะถูกนำมาทำฉนวนกันความร้อน เช่น ไม้ พลาสติก แก้ว กระเบื้อง เป็นต้น
2. การถ่ายโอนความร้อนโดยการพาความร้อน เป็นการถ่ายโอนความร้อนโดยวัตถุที่เป็นตัวกลางในการพาความร้อนจะเคลื่อนที่ ไปพร้อมกับความร้อนที่พาไป ตัวกลางในการพาความร้อน จึงเป็นสารที่โมเลกุลเคลื่อนที่ได้ง่าย ได้แก่ ของเหลวและแก๊ส ลมบกลมทะเลเป็นการเคลื่อนที่ของอากาศที่พาความร้อนจากบริเวณหนึ่งไปยัง อีกบริเวณหนึ่ง การต้ม การนึ่ง และการทอดอาหารเป็นการทำให้อาหารสุกโดยการพาความร้อน
3. การถ่ายโอนความร้อนโดยการแผ่รังสีความร้อน เป็นการ ถ่ายโอนความร้อนโดยไม่ต้องอาศัยตัวกลาง เช่น การแผ่รังสีความร้อนจากดวงอาทิตย์มายังโลก การแผ่รังสีความร้อนจากเตาไฟ ไปยังอาหารที่ปิ้งย่างบนเตาไฟ เป็นต้นสมดุลความร้อน
สมดุลความร้อน หมายถึง ภาวะที่สารที่มีอุณหภูมิต่างกันสัมผัสกัน และถ่ายโอนความร้อนจนกระทั่งสารทั้งสองมีอุณหภูมิเท่ากัน (และหยุดการถ่ายโอนความร้อน) เช่น การผสมน้ำร้อนกับน้ำเย็นเข้าด้วยกัน น้ำร้อนจะถ่ายโอนพลังงานความร้อนให้กับน้ำเย็น และเมื่อน้ำที่ผสมมีอุณหภูมิเท่ากัน การถ่ายโอนความร้อนจึงหยุด
การดูดกลืนความร้อนของวัตถุ
วัตถุทุกชนิดสามารถดูดกลืนพลังงานรังสี การดูดกลืนพลังงานรังสีของวัตถุเรียกว่า “การดูดกลืนความร้อน” จากการค้นพบของนักวิทยาศาสตร์พบว่า วัตถุที่มีผิวนอกสีดำทึบหรือสีเข้ม จะดูดกลืนความร้อนได้ดี วัตถุที่มีผิวนอกสีขาวหรือสีอ่อนจะดูดกลืน ความร้อนได้ไม่ดี
ในทำนองตรงกันข้าม วัตถุที่มีความร้อนทุกชนิดสามารถคายความร้อนได้เช่นกัน โดยวัตถุที่มีผิวนอกสีดำจะคายความร้อนได้ดี และวัตถุที่มีผิวนอกขาวจะคายความร้อนได้ไม่ดี
ในชีวิตประจำวันใช้ประโยชน์จากสมบัติของการดูดกลืนความร้อนและการคายความ ร้อนของวัตถุในการเลือกสีทาอุปกรณ์เครื่องใช้ต่างๆ เช่น ชุดนักดับเพลิงมีสีสว่างและแวววาวเพื่อไม่ให้รับพลังงานความร้อนมากเกินไป บ้านเรือนที่อยู่อาศัยในเขตร้อนนิยมทาด้วยสีขาว เป็นต้น
การขยายตัวของวัตถุ
วัตถุบางชนิดจะขยายตัวเมื่อได้รับความร้อน และจะหดตัวเมื่อคายความร้อน การขยายตัวของวัตถุเป็นสมบัติเฉพาะตัวของวัตถุ อัตราส่วนระหว่างขนาดของวัตถุที่เปลี่ยนแปลงไปกับขนาดเดิมของวัตถุต่อ อุณหภูมิที่เปลี่ยนแปลง เรียกว่า “สัมประสิทธิ์ของการขยายตัว” วัตถุใดที่มีสัมประสิทธิ์ของการขยายตัวมากจะขยายตัวได้มากกว่าวัตถุที่มี สัมประสิทธิ์การขยายตัวน้อย เช่น ที่อุณหภูมิ 25 องศาเซลเซียส และความดันบรรยากาศเดียวกัน สังกะสี ตะกั่ว อะลูมิเนียม จะขยายตัวได้มากไปน้อย ตามลำดับ
ความรู้เรื่องการขยายตัวของวัตถุเมื่อได้รับความร้อนถูกนำไปใช้ประโยชน์ อย่างกว้างขวาง เช่น การเว้นรอยต่อของรางรถไฟ การเว้นช่องว่างของหัวสะพาน การประดิษฐ์เทอร์มอมิเตอร์ และการติดตั้งเทอร์มอสแตตไฟฟ้า เพื่อใช้ควบคุมระดับอุณหภูมิของเครื่องใช้ไฟฟ้า เป็นต้น

ขอขอบคุณ

อ้างอิง http://teenunigang.blogspot.com/2010/04/4.html

ข้อสอบเรื่อง งานเเละพลังงาน

1. นำเชือกเส้นเล็ก ๆ ผูกวัตถุมวล 5 กิโลกรัม แล้วหย่อนลงจากที่สูง 20 เมตร ด้วยความเร่งคงที่ 0.5 เมตรต่อวินาที  จงหางานของแรงตึงในเส้นเชือกเมื่อหย่อนวัตถุลงมาได้ระยะทาง 10 เมตร
เฉลย 

ใน การ ปล่อย วัตถุ จาก ที่ สูง ลง สู่ ที่ ต่ำ พลังงานจลน์ ของ วัตถุ จะ เปลี่ยน ไป อย่างไร

2 . วัตถุมวล 1 กิโลกรัม อยู่บนพื้นระดับลื่น เคลื่อนที่ด้วยความเร็ว 5 เมตร/วินาที  มีแรง 10 นิวตัน กระทำต่อวัตถุในทิศตรงข้ามกับการเคลื่อนที่ นาน 5 วินาที จะเกิดงานเท่าใด

เฉลย 
ใน การ ปล่อย วัตถุ จาก ที่ สูง ลง สู่ ที่ ต่ำ พลังงานจลน์ ของ วัตถุ จะ เปลี่ยน ไป อย่างไร

3. วัตถุหนัก 20 นิวตัน วางอยู่บนพื้นที่จุด A จุด B อยู่เหนือจุด  A และสูงจาก A เท่ากับ 4 เมตร  จุด C อยู่ในแนวระดับเดียวกันกับจุด B และห่างจาก B เป็นระยะ 3 เมตร จงหางานที่ทำในการยกวัตถุจาก A ไป B แล้วไป C

เฉลย 

ใน การ ปล่อย วัตถุ จาก ที่ สูง ลง สู่ ที่ ต่ำ พลังงานจลน์ ของ วัตถุ จะ เปลี่ยน ไป อย่างไร